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STABILITY CRITERIA FOR DIFFERENCE APPROXIMATIONS TO
HYPERBOLIC SYSTEMS, AND MULTIPLICATIVITY OF

MATRIX AND OPERATOR NORMS

Principal Investigator: Moshe Goldberg

ABSTRACT

Research completed under Grant AFOSR -88-0175 by Moshe
Goldberg consists of the following two topics:

(a) Convenient stability criteria for difference approximations to
hyperbolic initial-boundary value problems.

(b) Multiplicativity and stability of matrix and operator norms.



STABILITY CRITERIA FOR DIFFERENCE APPROXIMATIONS TO
HYPERBOLIC SYSTEMS, AND MULTIPLICATIVITY OF

MATRIX AND OPERATOR NORMS

Principal Investigator: Moshe Goldberg

1. Convenient Stability Criteria for Difference Approximations to
Hyperbolic Initial-Boundary Value Problems

Consider the first order system of hyperbolic partial differential equations

au(x,t)/)t = Aau(x,t)/ax + Bu(x,t) + f(x,t), x >0, t_ 0, (1.1a)

where u(x,t) = (u(1)(x,t), ... , u(n)(x,t)y is the unknown vector (prime denoting the

transpose), f(x,t) = (f(1)(x,t), ..., f(n)(x,t))' is a given n-vector, and A and B are

iixed n x n matrices such that A is diagonal of the form

AI 0

A 0 A A >0, A"<0, (1.2)

with AI and A"1 of crders k x k and (n - k) x (n - k), respectively.

The solution of (1.la) is uniquely determined if we prescribe initial values

u(x,0) = t0(x), x>0, (1.1b)

and boundary conditions

u (O,t) = Sul(O,t) + g(t), t 0 0, (1.1c)
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where S is a fixed (n - k) x k coupling matrix, g(t) a given (n - k)-vector, and

1 ( 1), u(k)), 11 (k.+ 1) . ,u(n))
U =(u ... u ) U =(u , ...,u (1.3)

a partition of u into its outflow and inflow components, respectively,
corresponding to the partition of A in (1.2).

In [GT7, 8] E. Tadmor and I extended our results in [GT4-6] and obtained
versatile, easily checkable stability criteria for a wide class of finite difference
approximations to the above initial-boundary value problem.

More specifically, introducirj a mesh size Ax > 0, At > 0, such that A. = At/Ax
is a constant, and using the notation vj(t) = v(jAx,t), we approximate (1 .la) by a

general, basic difference scheme -- explicit or implicit, dissipative or not, two-
level or multilevel -- of the form

S
Q.1vI(t + At) = I_, ' avi(t- oAt) + Atb(t), j =r, r + 1,

0=0

(1.4)

Q ,A E",  Ev =v 1' a 1.. s,

where the n x n coefficient matrices A are polynomials in kA and AtB, and the

n-vectors b (t) depend on f(x,t) and its derivatives.

The difference equations in (1.4) have a unique solution v.(t + At) if we

provide initial valuc.

vi( At) = v.(oAt), a= 0, ... , s, j = 0,1,2, (1.5)

and specify, at each time level t = oAt, a = s, s + 1, ..., boundary values

vi(t + At), j = 0, ..., r - 1. Such boundary values are determined by boundary

conditions of the form
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Tvj(t +At) = , T)v(t- oat) +Atd (t), j = 0 r -1
(=0

(1.6a)
T0) = 0 El,  = 1...q
To aIt

T- 0

where the n x n matrices C(j) depend on A, AtB and S, and the n-vectors d (t)

are functions of f(x,t), g(t) and their derivatives.

Our intention was to interpret the difficult and often stubborn Gustafsson-
Kreiss-Sundstr6m stability criterion in [GKS] in order to obtain convenient,
simple stability criteria for approximation (1.4) - (1.6a). While we were unable to
meet this goal for general boundary conditions of type (1.6a), we managed to
achieve rather satisfactory results under the further assumption that, in

accordance with the partition of A in (1.2), the matrices C 0) can be written as

C 10) C 111(j)

Ct( = (1.6b)
0T C111(j) C 11(j)

where for B = 0:

the CI M are independent of j, (1 .6c)
CT

the C I M are diagonal, (1 .6d)
a T

the CI 11 (j) vanish , (1.6e)
all

the C"I 0) vanish for T >0 or a> -1. (1.6f)
a'C

The essence of (1.6c)-(1.6e) is that for B = 0, the outflow boundary

conditions are translatory (i.e., deiermined at all boundary points by the same
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coefficients), separable (i.e., split into independent scalar conditions for the
different outflow unknowns), and independent of outflow values.
Assumption (1.6f) implies that for B = 0, the inflow values at the boundary
depend essentially on the outflow.

It should be pointed out that our outflow boundary conditions are quite
general, despite the apparent restrictions in (1 .6c)-(1.6e). Indeed, (1.6c) is not
much of a restriction, since in practice the outflow boundary conditions are often
translatory. In particular, if the numerical boundary consists of a single point,
then the boundary conditions are translatory by definition, so (1.6c) holds
automatically. The restrictions in (1.6d) and (1.6e) pose no great difficulties
either, since they are satisfied by all reasonable boundary conditions, where for

B = 0 the C' usually reduce to polynomials in the diagonal block A', and the

C vanish.

We realize that in view of the restriction in (1.6f) our inflow boundary
conditions are not quite as general as the outflow ones. They can, however, be
constructed to any degree of accuracy (see (GT2]); and they can be
conveniently extended as shown in [GT8I. We note that if the boundary consists
of a single point, then such conditions can be achieved in a trivial manner,
simply by duplicating the analytic condition (1.lc), i.e.,

vO(t +,At) = SVIo(t + At) + g(t + At).

Throughout our work we assume, of course, that the basic scheme (1.4) is
stable for the pure Cauchy problem, and that the additional assumptions which
guarantee the validity of the Gustafsson-Kreiss-Sundstr~m theory in [GKS],
hold.

The first step in our analysis was to reduce the above stability question to
that of a scalar, homogeneous problem. This is obtained by considering the
outflow scalar equation

au(x, t)/dt = aau(x, t)/ax, x > 0, t >_ 0, a = constant > 0, (1.7)
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for which the basic scheme (1.4) reduces to the homogeneous scheme

S

Qlvj(t + At) = 2 Qavj(t- aAt)

(1.8a)

Q = a Et, a=-1 .... s,
'C.=- r

and the boundary conditions (1.6) reduce to translatory conditions of the form

T1v i(t + At) = Tov(t - cAt)
0-0 (1.8b)

m

T =X cT Et, a=-1,....q,

where a and c are scalar coefficients.

Referring to (1.8) as the basic approximation, we proved:

Theorem 1.1 [GT7, 8]. Approximation (1.4)-(1.6) is stable if and only if

the basic approximation (1.8) is stable for every eigenvalue a > 0 of A .
That is, approximation (1.4)-(1.6) is stable if and Only if the scalar outflow
components of its principal part are all stable.

This reduction theorem implies that from now on we may restrict our stability
study to the basic approximation (1.8).

In order to introduce our stability criteria for the basic approximation, we use
the coefficients of the basic scheme (1.8a) to define the basic characteristic
function

P(z,K) = a a z .
- r C=O



Similarly, using the coefficients of the boundary conditions in (1 .8b) we define
the boundary c/;aracteristic function

R(z,K) = Y- at ]Tz
Now putting

Q(z,K) P(z,ic) I+ I R(z,K) I

we proved:

Theorem 1.2 [GT7, 8]. The basic approximation (1.8) is stable if either

aP(z,K) aP(Z,ic) < 0 (1.l1Oa)

or

Q = -1, K = -1) > 0; (1.l1Ob)
and in addition

Q(z,K) >0for all I z1=1IC1 = 1, K # 1, (z,K) (# ,) (1. 1Oc)

O(z, K=1) > 0 for all jzj = 1, z # 1, (1.l1Od)

Q(z,K) > 0 for all IzI !1, 0 < IKI < 1. (1.l1Oe)

The advantage of this setting of Theorem 1 .2 is clarified by the following
lemma, in which we provide helpful sufficient conditions for each of the four
inequalities in (1.10b - e) to hold:
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Lemma 1.3 [GT7, 81.
(i) Inequalities (1 .1 Ob,c) hold if either the basic scheme (1 .8a) or the

boundary conditions (1.8b) are dissipative.
(ii) Inequality (1.1 Od) holds if any of the following is satisfied:

(a) The basic scheme is two-level.
(b) The basic scheme is three-level and

!Q(z = -1,K = 1) > 0. (1. 11)

(c) The boundary conditions are at most two-level and at least
zero-order accurate as an approximation to equation (1.7).

(d) The boundary conditions are three-level, at least zero-order
accurate as an approximation to (1.7), and (1.11) is satisfied.

(iii) Inequality (1.10e) holds if the boundary conditions fulfill the von
Neumann condition, and are either explicit or satisfy

m
r=n

The stability criteria obtained in Theorem 1.2 depend both on the basic
scheme and the boundary conditions, but not on the intricate and often
complicated interaction between the two. Consequently, Theorem 1.2, aided by
Lemma 1.3, provide in many cases a convenient alternative to the celebrated
stability criteria of Kreiss (K21 and of Gustafsson, Kreiss and Sundstrim [GKS].

Having the new criteria, we easily established stability for a host of examples
that incorporate and generalize most of the cases studied in recent literature;
e.g., [Gol, Go2, GGT, GKS, GO, GT1, GT2, GT4-6, K1, KO, 01, Osh, Skl, Sk2,
SK, Ta, Th,Trl]. To mention just - few of our examples, we obtained stability for:

(a) Any stable basic scheme, with boundary conditions generated by
either the explici or implicit one-sided Euler schemes.

(b) Any stable two-level basic scheme, with boundary conditions
generated by either horizontal extrapolation or by the one-sided
three-level Euler scheme.
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(c) Any stable dissipative basic scheme, with boundary conditions
generated by oblique extrapolation or by the Box scheme.

(d) The Crank-Nicolson, Backward-Euler, Leap-Frog and Lax-Friedrichs
schemes (all nondissipative), with boundary conditions generated by
either oblique extrapolation or by the one-sided Weighted Euler
scheme.

We drew great satisfaction from the fact that our theory and examples in
[GT4-6] were used already by a number of authors, including Berger Bm],
LeVeque [Le], South, Hafez and Gottlieb [SHG], Thune [Thl, 2], Trefethen [Trl,
2], and Yee [Y]. Thune, in his effort to provide a software package for stability
analysis of finite difference approximations to hyperbolic initial-boundary value
problems, says in [Thl]: "...Another approach has been to derive new criteria,
based on the Gustafsson-Kreiss-Sundstr~m theory but more convenient for
practical use,.. The most far-reaching work along these lines has been made by
Goldberg and Tadmor [GT1, 2, 4] ..." In [Th2] he says: "A conceptually different
approach has been suggested by Goldberg and Tadmor [GT6]. They have
treated a fairly general class of difference approximations of problems in one
space dimension. By exploring the properties of this class they have been able
to ... simplify the stability analysis considerably". Talking about the ultimate
goal of his project, Thune [Th2] adds: "...the black box design ought to be
abandoned. A flexible tool box design would be preferable. For example, the
environment shoud include tools for checking the convenient stability conditions
of Goldberg and Tadmor".

We were also pleased to learn that part of our theory in [GT7] was taught
already in several institutions including UCLA, NYU, and the University of
Paris VI.

2. Norms, Seminorms and Multiplicativity Factors

Let A be an algebra over the complex field C. As usual, a real-valued
function
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S :A--+R

is called a seminorm if for all x, y e A and X r C:

S(x) >_ 0,

S(Xx) = I X l S(x),

S(x + y) < S(x) + S(y).

If in addition, S is positive definite, i.e.,

S(x) > 0, x # 0,

then S is a norm. We call a seminorm S proper if S 0 and S(x) = 0 for some
x # 0. Finally, we say that S is submultiplicative (or simply, multiplicative ) if

S(xy) < S(x)S(y), Vx,y e A.

Of special interest are, of course, operator algebras. Here, we have a
normed vector space V over C and an algebra B(V) of bounded linear
operators on V.

The first example that comes to mind of a multiplicative norm on an operator
algebra is the ordinary operator norm.

i1AI = sup{IAx xeV, Ix = 1}, (2.1)

where is the vector norm on V.

If V is a Hilbert space, then a well known example of a nonmultiplicative
norm on B(V) is the numerical radius (e.g., [Bc, Go3, GT3, Ha, P]):

r(A) = supI(Ax, x) • xe V, I x =(x,x) 2  = 1 , (2.2)

which plays an important role in stabil. , analysis of finite difference schemes for

multi-space-dimensional hyperbolic initial-value problems [GT3, Li, LW, Tul.
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Another example of considerable interest is the I norm, 1 !5 p < -, defined

on Cn x n' the algebra of n x n complex matrices:

1/p

A = :1m PA MdEC (2.3)

Ostrowski [Ost] has shown that this norm is multiplicative if and only if 1 < p < 2.

Given a seminorm S on an arbitrary algebra A, and a fixed constant l. > 0,

then obviously S, - P.S is a seminorm too. Clearly, S,, may or may not be

multiplicative. If it is, we call p. a mJitiplicativity factor for S. That is, p. is a

multiplicativity factor for S if and only if

S(xy) < p.S(x)S(y), Vx,y e A.

Evidently, if P. is a multiplicativity factor of S, then so is any p. with p. _ P0.
Thus, having a seminorm S, the question is whether S has multiplicativity

factors; and if so, is there a best (least) one?

This question can be easily answered as follows:

Theorem 2.1 ([GS1], [AG1]). Let A be an algebra, and let S * 0 be a

seminorm on A Then:

(a) S has muftiplicativity factors if and only if Ker S is an ideal in A and

p.inf=Sup{S(xy) : x,y e A, S(x)=S(y)=I}< (2.4)

(b) If S has multiplicativitiy factors and p.inf > 0, then p. is a

multiplicativity factor if and only if p. >_ L inf"

(C) If S has multiplicativitiy factors and inf = 0, then p. is a

multiplicativity factor if and only if pL > o.
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If A is finite dimensional and S is a norm, then Ker S = {0} is an ideal in A,

and a standard compactness argument implies that ginf in (2.4) is finite; so by

Theorem 2.1, S has muitiplicativity factors. This is not always the case if S is a
proper seminorm.

In the infinite dimensional case, it was shown by Straus, Arens and myself
[GS2, AG1], that norms as well as proper seminorms may or may not have
mutiplicativity factors.

While Theorem 1.1 seems to settle the question of characterizing
multiplicativity factors, the quantity ginf in (2.4) is often difficult to compute. A

more practical approach toward checking whether a given constant IL > 0 is the
best (least) multiplicativity factor for a given seminorm S, is by verifying that

S(xy)<!S(x)S(y) Vx, yE A,

with equality for some x0 and yo for which S(xo) * 0, S(yo) # 0.

Using this observation, Holbrook [Ho], and independently Straus and myself
[GS1], showed that if V is a Hilbert space over C of dimension at least 2, and r is

the numerical radius in (2.2), then the best multiplicativity factor for r is I = 4.

Similarly, Maitre [M], and Straus and I [GS3], showed that the best
multiplicativity factor for the I norm on C defined in (2.3), is:p nxn

1 , 1 p 52

n { 2<_p <_.

Often, when the least multiplicativity factor remains unknown, one may try to
obtain multiplicativity factors through the following version of a theorem by
Gastinel.

Theorem 2.2 [Ga, GS2, AG1]. Let S, T be seminorms on an algebra
A. Let T be multiplicative, and let t > a> 0 be constants such that

aT(x ) _< S(x) <: rT(x), Vx E A.

Then any g >  / 2 in a multiplicative factor for S.

14



This result was utilized by Straus and myself [GS2, 41 to obtain
multiplicativity factors for certain generalizations of the numerical radius, called
C-numerical radii.

In [AG1] Arens and I investigated multiplicativity factors in terms of the
kernels of S. In particular we proved:

Theorem 2.3 (AG1]. If A is a simple algebra then there are no
multiplicative proper seminorms on A.

Since C is simple (e.g. [BM] ), we immediately obtain from Theorem 2.3rnxn

the following result that was directly proved by Straus and myself in [GS1]:

Theorem 2.4 [AG1]. There are no multiplicative proper seminorms on

Cnxn"

Arens and I [AG1, 2] specialized our study to function algebras and to
seminorms generated by the sup norm, where we gave the following three
characterizations of multiplicativity factors:

Theorem 2.5 [AG1, 2]. Let T be a set and let A be the algebra of
bounded functions

x: T --+ C,

with the usual multiplication

xy(t)=x(t)y(t); x,ye A; te T.

For a fixed element c, 0 # c E A define the seminorm

SC (x) = sup I c(t)x(t)l. (2.5)
tE T
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Then:

(a) Sc has multiplicativity factors if and only if

-- inf{lc( t )I : t -E T, c( t ) * 0} > 0.

(b) If E > 0, then ± > 0 is a multiplicativity factor for Sc if and only if

Theorem 2.6 [AG1, 2]. Let T be a topological space and let A be the
algebra of bounded continuous functions

x: T --- C.

For a fixed c, 0 * C E A, let SC be the seminorm in (2.5). Then conclusions

(a) and (b) of Theorem 2.5 hold.

Theorem 2.7 [AGI, 2]. Let T, A, c, and S. be as in Theorem 2.6, and

suppose T is connected. Then

(a) The following are equivalent:

(i) Sc has the multiplicativity factors.

(ii) 5 -infflc(t )1: t r T) >0.

(iii) c is invertible.

(iv) SC is a norm on a

(b) If 5 > 0 then i.L > 0 is a multiplicativity factor for SC if and only if

4 t >-1

For example, consider 10*, the algebra of bounded sequences x = { ,

over C, with the usual Hadamard multiplication

xy = {n)n} x = { IY = IT1}E

16



Fix an element c = { I} c 0 0, and define the seminorm,

SM(x) = supIy1j 1I, x = ' .

Obviously, SC is a norm on I if and only if

y * 0, j=1,2,3 .

Otherwise Sc is a proper seminorm.

By Theorem 2.5 (here T = Z+ = {1,2,3 ... }), Sc has multiplicativity factors if

and only if

E - inf i l >  0,
.Y ,*0

and if F > 0 then the best (least) multiplicativity factor for Sc is .min-

The four simple selections

y. = 1, j=1,2,3,...

Yj = J-1, j=1,2,3,

Y1 =0; Y =1, j=2,3,4,...

7Y =0; yj j , 2,3,4,

show, as indicated before, that in the infinite dimensional case, both norms and

proper seminorms may or may not have mutiplicativity factors.
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Next, let S be a seminorm on Cn and consider the real-valued function S+

defined by

S*(x) = S(x ), x n,

where

x = ( el Rn

is the vector obtained by taking the absolute values of the components of

x = j)

As in [Go9], we call S quasimonotonic if

x, y E Rn with 0 < x _ y implies S(x) 5 S(y),

where the inequalities 0 <_ x <_ y are construed componentwise.

With this definition we can prove:

Theorem 2.8 [Go9]. Let S be a seminorm (norm) on Cn. Then S+ is a

seminorm (norm) on Cn if and only if S is quasimonotonic.

For example, it was shown in [Go8] that the numerical radius r in (2.2) is

quasimonotonic on Cn x n" Since r is a norm, so is r+ by Theorem 2.8.

In order to discuss multiplicativity factors for S+ let us assume that Cn has

been given a structure of an algebra over C. This can be done, for instance, by

taking Cn with the usual Hadamard multiplication

xy = ( j' x=( '), y= ) C=T,

or Cn x n with usual matrix multiplication.

We can now prove the following result that associates multiplicativity factors

of S with those of S+:
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Theorem 2.9 [Go9]. Let S be a quasimonotonic seminorm on Cn with a
multiplicativity factor V±, and suppose that Cn has been given a structure of an
algebra such that

(xy) < x y Vx,yC. (2.6)

Then:

(a) gi is a multiplicativity factor for S+.

(b) If S has a least multiplicativity factor, then so does S+ , and these
least factors satisfy

Amin (S) _> iPmi n (S* )- 12.7)

Let us point out that condition (2.6) holds for all common multiplication rules

on Cn , including Hadamard's multiplication on Cn and the standard matrix
multiplication on Cn x n where we have

(xy) = x y4  Vx, ye

and

(AB) 4+ <- AB VA, BE Cnxn!

respectively.

We further remark that the numerical radius in (2.2) satisfies

4min (r) = Amin(r 4 ) = 4,

so equality in (2.7) is possible. It was shown, however, in fGo8] that in general
the ratio

4 i (S) / mi, (S )

can be arbitrarily large.
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The above concepts of multiplicativity and multiplicativity-factors can be

extended as follows:

Definition. Let U, V, and W be normed vector spaces over C; and let

B 1 = B(U, W), B2 = B(V, W), and B3 = B(U, V) be the spaces of bounded linear

operators from U into W, V into W, and U into V, respectively. If S,, S2, and S3

are seminorms on B II B2 , and 'B respectively, arid l. > 0 is a constant such that

S,(AB) < S2(A)S 3(B) V A E B2, B B3 ,

then we say that l. is a multiplicativity factor for S with respect to S2 and S3.

For example, if V is a Hilbert space, and if 11 11 and r are the operator norm

and numerical radius in (2.1) and (2.2), then it is not hard to see that

r(AB) -< 2r(A)II B 11 V A, B e B(V),

with equality for certain operators A * 0 and B * 0. Thus, lL = 2 is the best

multiplicativity factor for r with respect to r and JH •

This example employs only a single vector space and two norms. In order to

demonstrate the idea of mixed multiplicativity to its full extent, consider, for

1 <P o the I norm of an m x n matrix A = (aE Crxn

n 11/p

A A 
(2.8)

Defining

1, P~q
(M)q l/p- 1/q

P() = m , q > p,

We have:
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Theorem 2.10 [Go4]. Let p, q, r satisfy 1 _ p, q, r -c, and let q' be the
conjugate of q (i.e., 1/q + 1/q' = 1). Then the best multiplicativity factor for
the Ip norm on Cm x n with respect to the Iq norm on C mxk and the Ir norm

on Ck x n is

X = (m) Xpr(n) qr(k).

That is, for all A e Cm x k andB e Ck x n"

SAB Ip < ! Xpq(m) Xpr(n) X q-r(k ) I A I q B Ir (2.9)

where this inequality is sharp.

Theorem 2.10 has quite a few applications. For example (see [Go6, 7]),
taking (2.9) with m = n = 1, we get an upper bound for the standard inner

product (x, y) on Cn in terms of I x IP and l I q ;and if we further set r = q' we

obtain the classical HOlder inequality.

Another application of Theorem 2.10 concerns the ordinary Ip operator-norm

on C

I1AI1p = max{IAXlp xeC, IXlp = 1 }, (2.10)

for which we obtain:

Theorem 2.11 [Go7]. Let p, q, r satisfy 1 p, q, r, < Then for a//

Ae Cmuxk, Be Ck x n'

II AB 1lp X pq (m) A.qp(k) X Pr(k) Xrp(n) 11 A IIq 1 B IIJ

where the inequality is sharp if either q < p < r or r < p 5 q.

A third consequence of (2.9) describes the equivalence relations between
the norms in (2.8) and (2.9):

21



Theorem 2.12 [Go5]. Let p, q satisfy 1 < p, q _ =, and let q' be the
conjugate of q. Then for all A r Cm x n'

A Ip -< X (mn)J A Iq,

11 A Xl -XPq (m) X.qp (n) I A 11q,
A 11p X pq(m) ,qp(n) A q

IA p I y (mn)1 / 1 A 1lq

where the first three inequalities are sharp.
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PROBLEMS IN APPLIED AND COMPUTATIONAL
MATRIX AND OPERATOR THEORY

Principal Investigator: Marvin Marcus

ABSTRACT

Research completed under Grant AFOSR-88-0175 by Marvin
Marcus during the period 5/1/88 - 11/30/90 consists of the
following topics:

(a) Hadamard Products and Powers

(b) Inequalities for Tensors

(c) Inequalities for Generalized Matrix Functions

(d) Inequalities for Eigenvalues and Singular Values

(e) Distance Matrices

(f) Numerical Range

(g) Determinants of Sums

In the following report papers are listed that were partially or
entirely completed during the reporting period.
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EIGENVALUE AND SINGULAR VALUE INEQUALITIES, TENSOR

SPACES, AND THE NUMERICAL RANGE

Principal Investigator: Marvin Marcus

Each of the sections that follow begin with the current disposition of the research paper named in

the section heading. A description of the research and appropriate references follow each

section heading.

1. Hadamard Square Roots

This paper is currently in press in the SIAM Journal of Matrix Analysis. The proof sheets have

been corrected and returned to the editor during the period of this report.

If A is an n-square positive semi-definite hermitian matrix of rank 1 then the Hadamard square root

of A is the n-square matrix obtained by replacing each entry of A by the principal value of its square

root. It is proved that if A has no zero or negative entries then the Hadamard square root has odd

rank and all odd ranks are possible.
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2. Multllnear Methods In Linear Algebra

This paper is currently in press in the journal Linear Algebra and its Applications. It is a written

version of a one hour invited address at the first meeting of the International Linear Algebra

Society held at Brigham Young University, Provo Utah, 8/12/89- 8/16/89.

Several classical and new results are presented in which multilinear algebra has proven to be an

effective tool. Some of the topics covered are: Weyl's inequalities; the Hadamard product:

mappings on tensor spaces; Gram matrices in tensor spaces; strong non-singularity and the LDU

theorem.
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3. Experiments with Entrywise Square Roots
This paper is currently scheduled to appear in :he next issue of The Math Works Newsletter. The
Math Works Inc. distributes the linear algebra package, MA TLAB.

In this paper MATLABTM was used to compute the entrywise square root of an n-square complex

matrix A and to investigate some of the usual invariants, e.g., rank (sqrt(A)). A particularly
important class of matrices are the n-square positive semi-definite hermitian A of rank 1 (such
matrices are the heart of the matter for the normal spectral decomposition theorem). It is easy to
generate random complex A of this kind:

x = 2 * rand (1,n) -ones (1,n);
y = 2 * rand (1,n) -ones (1,n);
u = x + i *y;

A= u'* u

Of course, if A has positive entries there is no difficulty in confirming that sqrt(A) has rank 1. If A
has a negative entry then sqrt(A) need not be hermitian, nor of rank 1:
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A= -1 1 -

In fact, there are A _> 0 (positive semi-definite hermitian) with positive entries for which sqr(A) is

indefinite [2, p. 462]:

100 9 4 1
A 9 100 0 81

[0 0 100 16

81 16 100

The eig(A) command produces

1.020535443538800e+02

9.771678596998484e+01

1.832428791889355e+02

1.698679048719973e+01

whereas eig(sqrt(A)) yields

1.033573194164571 e+01

9.027566724798694e+00

-1.873373948049415e-01

2.082403872836054e+01

The MATLAB TM code exhibited above can easily be embedded in a script to compute and

tabulate rank(sqrt(A)) for a large number of complex n-square A _> 0, rank (A) = 1. What is

surprising is that for all n tested, and significantly large samples (250 random A), rank(sqrt(A)) was

computed as an od integer in every case. These experimental results led to the conjecture and

proof of the following result.

If A is an n-square, rank 1, positive semi-definite hermitian matrix with no negative

entries then rank(sqrt(A)) is always an odd integer. Moreover, if v is any odd integer,

1 5 v _ n, there exists an n-square A > 0, rank(A) = 1, with no zero or negative

entries, for which rank(sqrt(A)) = v.
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4. Bessel's Inequality In Tensor Space
This paper appeared during the period of the current report: Linear and ."I. .. Algebra

(1988) Vol. 23, pp. 233-249.

Let A be an n-square complex matrix and define AA to be the n!-square matrih ",se entries are

[ ao(i),.(i) where a and tr run lexicographically over Sn' If A is positive definite hermitian and x is

a unit n!-tuple then

(AAX'X) >_ det(A) + _ X(a) 12 c(A)

n 2 n
where c(A) is the largest of the numbers ai / a.. , j = 1. n, and the summation is over a

ES n . For n = 3, if A is not permutation similar to a direct sum and X is a unit n!-tuple then

(AAXX) = det(A) iff X is a multiple of the alternating character. The relationships among recent

results of Bapat and Sunder, Chollet, and Gregorac and Hentzel are also discussed.
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5. A Unified Exposition of Some Classical Matrix Theorems

This paper appeared during the period of the current report: Linear and Multilinear Algebra,

(1989), Vol. 25, pp. 137-147.

There are several interesting and elegant theorems about hermitian matrices that can be unified

by a very simple inequality for inner products.

The concepts contained in this paper are all "name" theorems: the Hadamard determinant

theorem; the Fischer inequality; the Kantorovict' inequality; Weyl's inequalities. What may be less

widely known is the observation that, except for Weyl's in~qualities, these results are, in fact,

equivalent to one another, and in turn, equivalent to dn elementary inequality usually referred to

as the "obvious" lo.,,r bound in the Kantorovich inequality.

The penultimate section of this note incorporates a brief, self-contained discussion of compound

matrices. This old subject is less well known than it should be, and, as it turns out, provides

additional insight into the theorems listed above.

In the final section, the important inequalities of H. Weyl that relate singular values and

eigenvalues are discussed.

The statements of all of the theorems appearing in the sequel are found in [21, with details

concerning their origins. The analysis of equality in Weyl's inequalities contained in the last

section of the paper are new.
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6. A Note on the Determinants and Elgenvalues of Distance Matrices

This paper appeared during the period of the current report: Linear and Multilinear Algebra,

(1989), Vol. 25, pp. 219-230.

A set of n vectors in a real s-dimenaional Euclidean space define an n-square matrix D whose i,j

entry is the distance between the ith and the jth vectors. This symmetric matrix has 0 down the

main diagonal and positive off diagonal entries. Such matrices are called distance matrices.

Distance matrices arise in a class of techniques known as multidimensional scaling (MDS). The

purppose of MDS is to reconstruct data concerning the vectors from an examination of their

distance matrix. Thus the invertibility of distance matrices (and related matrices) is an important

necessary condition on the vectors which is directly discernable from their distance matrix. The

purposes of the present paper are: to examine the behavior of the determinant of distance

matrices; to obtain explicit formulas for the eigenvalues of a distance matrix when the vectors from

a regular polygon in real 2-dimensional space; and to present in simplified from certain classical
results on the rank and signatutre properties of matrices whose entries are squared distances.
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7. Symmetry Properties of Higher Numerical Ranges
This paper appeared during the period of the current report: Linear Algebra and Appl., 1988,

Vol. 104, pp. 141-164

Let A be a linear operator on a finite dimensional unitary space V of dimension n. The kt h higher

numerical range of A, denoted by Wk(A), is the totality of complex numbers tr(PAP) where P runs

over all k-dimensional orthogonal projections on V. In this paper it is proved that Wk(A) is a

polygon with the real axis as a line of symmetry, k = 1 ... , n, if and only if A is normal with a real

characteristic polynomial. Several non-normal examples are constructed in order to investigate

the extent to which the symmetry of all of the Wk(A) is required.
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8. Lower Bounds for the Norms of Decomposable Symmetrlzed Tensors

This paper appeared during the period of the current report: Linear and Multilinear Algebra,

(1989), Vol. 25, pp. 269 - 274.

Lower bounds are given for the difference of two decomposable symmetrized tensors. The first

bound uses a norm which makes the component vectors in a decomposable symmetrized tensor

part of an orthonomral basis. The second bound holds only for decomposatble elements of

symmetry classes whose associated characters are linear.
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